
Rue de Stassart, 36 • B-1050 Bruxelles
Tel : +32 2 550 08 11 • Fax : +32 2 550 08 19

EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

WORKSHOP CWA 14050-4

AGREEMENT November 2000

ICS 35.200; 35.240.15

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 4: Identification Card Unit Device Class Interface

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 14050-4:2000 E

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

Page 2
CWA 14050-4:2000

Table of Contents

Foreword 4

1. Introduction 6

1.1 Background to Release 3.0 6

1.2 XFS Service-Specific Programming... 6

2. Identification Card Readers and Writers 8

3. References... 9

4. Info Commands.. 10

4.1 WFS_INF_IDC_STATUS... 10

4.2 WFS_INF_IDC_CAPABILITIES .. 12

4.3 WFS_INF_IDC_FORM_LIST .. 14

4.4 WFS_INF_IDC_QUERY_FORM ... 14

5. Execute Commands... 16

5.1 WFS_CMD_IDC_READ_TRACK.. 16

5.2 WFS_CMD_IDC_WRITE_TRACK .. 17

5.3 WFS_CMD_IDC_EJECT_CARD... 19

5.4 WFS_CMD_IDC_RETAIN_CARD... 19

5.5 WFS_CMD_IDC_RESET_COUNT.. 20

5.6 WFS_CMD_IDC_SETKEY .. 20

5.7 WFS_CMD_IDC_READ_RAW_DATA.. 21

5.8 WFS_CMD_IDC_WRITE_RAW_DATA .. 23

5.9 WFS_CMD_IDC_CHIP_IO .. 25

5.10 WFS_CMD_IDC_RESET .. 26

5.11 WFS_CMD_IDC_CHIP_POWER .. 26

5.12 WFS_CMD_IDC_PARSE_DATA .. 27

6. Events 29

6.1 WFS_EXEE_IDC_INVALIDTRACKDATA... 29

6.2 WFS_EXEE_IDC_MEDIAINSERTED ... 29

6.3 WFS_SRVE_IDC_MEDIAREMOVED ... 29

6.4 WFS_EXEE_IDC_MEDIARETAINED ... 29

6.5 WFS_EXEE_IDC_INVALIDMEDIA ... 30

6.6 WFS_SRVE_IDC_CARDACTION... 30

6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD... 30

6.8 WFS_SRVE_IDC_MEDIADETECTED.. 30

7. Form Description 31

8. Relation with PC/SC.. 34

Page 3
CWA 14050-4:2000

9. C-Header file 35

Page 4
CWA 14050-4:2000

Foreword

This CWA is revision 3.0 of the XFS interface specification.

The move from an XFS 2.0 specification (CWA 13449) to a 3.0 specification has been prompted by a series of
factors.

Initially, there has been a technical imperative to extend the scope of the existing specification of the XFS Manager
to include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now
over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards
this release.

The clear direction of the CEN/ISSS XFS Workshop, therefore, is the delivery of a new Release 3.0 specification
based on a C API. It will be delivered with the promise of the protection of technical investment for existing
applications and the design to safeguard future developments.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2000-10-18. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.0.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.0
(see CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Page 5
CWA 14050-4:2000

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to
Version 3.0 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA)
- Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

Revision History:

1.0 May 24, 1993 Initial release of API and SPI specification
1.11 February 3, 1995 Separation of specification into separate documents for API/SPI and

service class definitions; with updates.
2.00 November 11, 1996 Updated release encompassing self-service environment Chip Card

handling inserted.
3.00 October 18, 2000 � Eliminate reference to Registry as a form of implementation for

threshold value in
WFS_USRE_IDC_RETAINBINTHRESHOLD command.

� Clarify that Form Definition attributes are not required in any
mandatory order.

� Clarify WFS_IDC_DEVBUSY meaning.
� Add WFS_CMD_IDC_RESET command.
� High Coercivity enhancements

For a detailed description see CWA 14050-18
IDC migration from version 2.00 to version 3.00, revision 1.00,
October 18th 2000

Page 6
CWA 14050-4:2000

1. Introduction

1.1 Background to Release 3.0

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation
of an industry standard. This move towards opening the participation beyond the BSVC's original membership has
been very succesful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and
quarterly meetings.

The move from an XFS 2.0 specification to a 3.0 specification has been prompted by a series of factors. Initially,
there has been a technical imperative to extend the scope of the existing specification of the XFS Manager to include
new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now
over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards
this release.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based on a C
API. It will be delivered with the promise of the protection of technical investment for existing applications and the
design to safeguard future developments.

1.2 XFS Service-Specific Programming

 The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial
Services is to standardize function codes and structures for the broadest variety of services. For example, using the
WFSExecute function, the commands to read data from various services are as similar as possible to each other in
their syntax and data structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.
There are three cases in which a service provider may receive a service-specific command that it does not support:

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is not considered to
be fundamental to the service. In this case, the service provider returns a successful completion, but does no
operation. An example would be a request from an application to turn on a control indicator on a passbook
printer; the service provider recognizes the command, but since the passbook printer it is managing does not
include that indicator, the service provider does no operation and returns a successful completion to the
application.

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is considered to be
fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling

Page 7
CWA 14050-4:2000

application. An example would be a request from an application to a cash dispenser to dispense coins; the
service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes,
returns this error.

� The requested capability is not defined for the class of service providers by the XFS specification. In this case,
a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

Page 8
CWA 14050-4:2000

2. Identification Card Readers and Writers

This section describes the functions provided by a generic identification card reader/writer service (IDC). These
descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute,
WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service allows for the operation of the following categories of units:
� motor driven card reader/writer
� pull through card reader (writing facilities only partially included)
� dip reader
� contactless chip card readers

The following tracks/chips and the corresponding international standards are taken into account in this document:

Track 1 ISO 7811

Track 2 ISO 7811

Track 3 ISO 7811 / ISO 4909

Watermark Sweden

Chip (contacted) ISO 7816

Chip (contactless) ISO 10536.

National standards like Transac for France are not considered, but can be easily included via the forms mechanism
(see Section 7, Form Definition).

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check
the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that are
able to check some other information on the card and compare it with the track data.

Persistent values are maintained through power failures, open sessions, close session and system resets.

Page 9
CWA 14050-4:2000

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000

Page 10
CWA 14050-4:2000

4. Info Commands

4.1 WFS_INF_IDC_STATUS

Description This command reports the full range of information available, including the information that is
provided either by the service provider or, if present, by any of the security modules. In addition
to that, the number of cards retained is transmitted for motor driven card reader/writer (for devices
of the other categories this number is always set to zero).

Input Param None.

Output Param LPWFSIDCSTATUS lpStatus;

typedef struct _wfs_idc_status
{
WORD fwDevice;
WORD fwMedia;
WORD fwRetainBin;
WORD fwSecurity;
USHORT usCards;
WORD fwChipPower;
LPSTR lpszExtra;
} WFSIDCSTATUS, * LPWFSIDCSTATUS;

fwDevice
Specifies the state of the ID card device as one of the following flags:

Value Meaning
WFS_IDC_DEVONLINE The device is present, powered on and online (i.e.,

operational, not busy processing a request and not in an
error state).

WFS_IDC_DEVOFFLINE The device is offline (e.g., the operator has taken the
device offline by turning a switch or pulling out the
device).

WFS_IDC_DEVPOWEROFF The device is powered off or physically not connected.
WFS_IDC_DEVNODEVICE There is no device intended to be there; e.g. this type of

self service machine does not contain such a device or
it is internally not configured.

WFS_IDC_DEVHWERROR The device is present but inoperable due to a hardware
fault that prevents it from being used.

WFS_IDC_DEVUSERERROR The device is present but a person is preventing proper
device operation. The application should suspend the
device operation or remove the device from service
until the service provider generates a device state
change event indicating the condition of the device has
changed e.g. the error is removed
(WFS_IDC_DEVONLINE) or a permanent error
condition has occurred (WFS_IDC_DEVHWERROR).

WFS_IDC_DEVBUSY The device is busy and unable to process an Execute
command at this time.

fwMedia
Specifies the state of the ID card unit as one of the following values:

Value Meaning
WFS_IDC_MEDIAPRESENT Media is present in the device, not in the entering

position and not jammed.
WFS_IDC_MEDIANOTPRESENT Media is not present in the device and not at the

entering position.
WFS_IDC_MEDIAJAMMED Media is jammed in the device; operator intervention is

required.
WFS_IDC_MEDIANOTSUPP Capability to report media position is not supported by

the device (e.g., a typical swipe reader).
WFS_IDC_MEDIAUNKNOWN The media state cannot be determined with the device

in its current state (e.g., the value of fwDevice is
WFS_IDC_DEVNODEVICE,
WFS_IDC_DEVPOWEROFF,

Page 11
CWA 14050-4:2000

WFS_IDC_DEVOFFLINE, or
WFS_IDC_DEVHWERROR).

WFS_IDC_MEDIAENTERING Media is at the entry/exit slot of a motorized device.

fwRetainBin
Specifies the state of the ID card unit retain bin as one of the following values:

Value Meaning
WFS_IDC_RETAINBINOK The retain bin of the ID card unit is not full.
WFS_IDC_RETAINNOTSUPP The ID card unit does not support retain capability.
WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly full.

fwSecurity
Specifies the state of the security unit as one of the following values:

Value Meaning
WFS_IDC_SECNOTSUPP No security module is available.
WFS_IDC_SECNOTREADY The security module is not ready to process cards.
WFS_IDC_SECOPEN The security module is open and ready to process

cards.

usCards
The number of cards retained; applicable only to motor driven ID card units for non-motorized
card units this value is 0. This value is persistent it is reset to zero by the
WFS_CMD_IDC_RESET_COUNT command.

fwChipPower
Specifies the state of the chip on the currently inserted card in the device as one of the following
flags:

Value Meaning
WFS_IDC_CHIPONLINE The chip is present, powered on and online (i.e.

operational, not busy processing a request and not in an
error state).

WFS_IDC_CHIPPOWEREDOFF The chip is present, but powered off (i.e. not
contacted).

WFS_IDC_CHIPBUSY The chip is present, powered on, and busy (unable to
process an Execute command at this time).

WFS_IDC_CHIPNODEVICE A card is currently present in the device, but has no
chip.

WFS_IDC_CHIPHWERROR The chip is present, but inoperable due to a hardware
error that prevents it from being used (e.g. MUTE, if
there is an unresponsive card in the reader).

WFS_IDC_CHIPNOCARD There is no card in the device.
WFS_IDC_CHIPNOTSUPP Capability to report the state of the chip is not

supported by the ID card unit device.
WFS_IDC_CHIPUNKNOWN The state of the chip cannot be determined with the

device in its current state.

lpszExtra
Points to a list of vendor-specific, or any other extended, information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 12
CWA 14050-4:2000

4.2 WFS_INF_IDC_CAPABILITIES

Description This command is used to retrieve the capabilities of the ID card unit.

Input Param None.

Output Param LPWFSIDCCAPS lpCaps;

typedef struct _wfs_idc_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
WORD fwReadTracks;
WORD fwWriteTracks;
WORD fwChipProtocols;
USHORT usCards;
WORD fwSecType;
WORD fwPowerOnOption;
WORD fwPowerOffOption;
BOOL bFluxSensorProgrammable;
BOOL bReadWriteAccessFollowingEject;
WORD fwWriteMode;
WORD fwChipPower;
LPSTR lpszExtra;
} WFSIDCCAPS, * LPWFSIDCCAPS;

wClass
Specifies the logical service class; value is WFS_SERVICE_CLASS_IDC.

fwType
Specifies the type of the ID card unit as one of the following values:

Value Meaning
WFS_IDC_TYPEMOTOR The ID card unit is a motor driven card unit.
WFS_IDC_TYPESWIPE The ID card unit is a swipe (pull-through) card unit .
WFS_IDC_TYPEDIP The ID card unit is a dip card unit.
WFS_IDC_TYPECONTACTLESS The ID card unit is a contactless card unit, i.e. no

insertion of the card is required.

bCompound
Specifies whether the logical device is part of a compound physical device and is either TRUE
or FALSE.

fwReadTracks
Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit can not access any track.
WFS_IDC_TRACK1 The ID card unit can access track 1.
WFS_IDC_TRACK2 The ID card unit can access track 2.
WFS_IDC_TRACK3 The ID card unit can access track 3.
WFS_IDC_TRACK_WM The ID card unit can access the Swedish Watermark

track.

fwWriteTracks
Specifies the tracks that can be written by the ID card unit (as a combination of the flags
specified in the description of fwReadTracks except WFS_IDC_TRACK_WM).

fwChipProtocols
Specifies the chip card protocols that are supported by the service provider as a combination of
the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit can not handle chip cards.
WFS_IDC_CHIPT0 The ID card unit can handle the T=0 protocol.
WFS_IDC_CHIPT1 The ID card unit can handle the T=1 protocol.
WFS_IDC_CHIPT2 The ID card unit can handle the T=2 protocol.
WFS_IDC_CHIPT3 The ID card unit can handle the T=3 protocol.
WFS_IDC_CHIPT4 The ID card unit can handle the T=4 protocol.
WFS_IDC_CHIPT5 The ID card unit can handle the T=5 protocol.

Page 13
CWA 14050-4:2000

WFS_IDC_CHIPT6 The ID card unit can handle the T=6 protocol.
WFS_IDC_CHIPT7 The ID card unit can handle the T=7 protocol.
WFS_IDC_CHIPT8 The ID card unit can handle the T=8 protocol.
WFS_IDC_CHIPT9 The ID card unit can handle the T=9 protocol.
WFS_IDC_CHIPT10 The ID card unit can handle the T=10 protocol.
WFS_IDC_CHIPT11 The ID card unit can handle the T=11 protocol.
WFS_IDC_CHIPT12 The ID card unit can handle the T=12 protocol.
WFS_IDC_CHIPT13 The ID card unit can handle the T=13 protocol.
WFS_IDC_CHIPT14 The ID card unit can handle the T=14 protocol.
WFS_IDC_CHIPT15 The ID card unit can handle the T=15 protocol.

usCards
Specifies the maximum numbers of cards that the retain bin can hold (zero if not available).

fwSecType
Specifies the type of security module used as one of the following values:

Value Meaning
WFS_IDC_SECNOTSUPP Device has no security module.
WFS_IDC_SECMMBOX Security module of device is MMBox.
WFS_IDC_SECCIM86 Security module of device is CIM86.

fwPowerOnOption
Specifies the power-on capabilities of the device hardware as one of the following values
(applicable only to motor driven ID card units):

Value Meaning
WFS_IDC_NOACTION No power on actions are supported by the device
WFS_IDC_EJECT The card will be ejected on power-on (or off, see

fwPowerOffOption below).
WFS_IDC_RETAIN The card will be retained on power-on (off).
WFS_IDC_EJECTTHENRETAIN The card will be ejected for a specified time on power-

on (off), then retained if not taken. The time for which
the card is ejected is vendor dependent.

WFS_IDC_READPOSITION The card will be moved into the read position on
power-on (off).

fwPowerOffOption
Specifies the power-off capabilities of the device hardware, as one of the flags specified for
fwPowerOnOption; applicable only to motor driven ID card units.

bFluxSensorProgrammable
Specifies whether the Flux Sensor on the card unit is programmable, this can either be TRUE or
FALSE.

bReadWriteAccessFollowingEject
Specifies whether a card may be read or written after having been pushed to the exit slot with an
eject command. The card will be retracted back into the IDC.

fwWriteMode
A combination of the following flags specify the write capabilities, with respect to whether the
device can write low coercivity (loco) and/or high coercivity (hico) magnetic stripes:

Value Meaning
WFS_IDC_NOTSUPP Does not support writing of magnetic stripes.
WFS_IDC_LOCO Supports writing of loco magnetic stripes.
WFS_IDC_HICO Supports writing of hico magnetic stripes.
WFS_IDC_AUTO Service provider is capable of automatically

determining whether loco or hico magnetic stripes
should be written.

fwChipPower
Specifies the capabilities of the ID card unit, for chip power management as a combination of
the following flags :

Value Meaning
WFS_IDC_NOTSUPP The ID card unit can not handle chip power

management.

Page 14
CWA 14050-4:2000

WFS_IDC_CHIPPOWERCOLD The ID card unit can power on the chip and reset it
(Cold Reset).

WFS_IDC_CHIPPOWERWARM The ID card unit can reset the chip (Warm Reset).
WFS_IDC_CHIPPOWEROFF The ID card unit can power off the chip.

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

4.3 WFS_INF_IDC_FORM_LIST

Description This command is used to retrieve the list of forms available on the device.

Input Param None.

Output Param LPSTR lpszFormList;

lpszFormList
Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

4.4 WFS_INF_IDC_QUERY_FORM

Description This command is used to retrieve details of the definition of a specified form.

Input Param LPSTR lpszFormName;

lpszFormName
Points to the null-terminated form name on which to retrieve details.

Output Param LPWFSIDCFORM lpForm;

typedef struct _wfs_idc_form
{

LPSTR lpszFormName;
char cFieldSeparatorTrack1;
char cFieldSeparatorTrack2;
char cFieldSeparatorTrack3;
WORD fwAction;
LPSTR lpszTracks;
BOOL bSecure;
LPSTR lpszTrack1Fields;
LPSTR lpszTrack2Fields;
LPSTR lpszTrack3Fields;

} WFSIDCFORM, * LPWFSIDCFORM;

lpszFormName
Specifies the null-terminated name of the form.

cFieldSeparatorTrack1
Specifies the value of the field separator of Track 1.

cFieldSeparatorTrack2
Specifies the value of the field separator of Track 2.

Page 15
CWA 14050-4:2000

cFieldSeparatorTrack3
Specifies the value of the field separator of Track 3.

fwAction
Specifies the form action; can be one of the following flags:

Value Meaning
WFS_IDC_ACTIONREAD The form reads the card.
WFS_IDC_ACTIONWRITE The form writes the card.

lpszTracks
Specifies the read algorithm or the track to write.

bSecure
Specifies whether or not to do a security check.

lpszTrack1Fields
Pointer to a list of null-terminated field names of Track 1, with the final name terminating with
two null characters.

lpszTrack2Fields
Pointer to a list of null-terminated field names of Track 2, with the final name terminating with
two null characters.

lpszTrack3Fields
Pointer to a list of null-terminated field names of Track 3, with the final name terminating with
two null characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:
Value Meaning
WFS_ERR_IDC_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_IDC_FORMINVALID The specified form is invalid.

Comments None.

Page 16
CWA 14050-4:2000

5. Execute Commands

5.1 WFS_CMD_IDC_READ_TRACK

Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, the
tracks are read immediately as described in the form specified by the lpstrFormsName parameter.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. Again the next step is reading the tracks specified in the form (see Section 7, Form
Definition, for a more detailed description of the forms mechanism). In addition to that, the results
of a security check via a security module (i.e., MM, CIM86) are specified and added to the track
data.

If the security check fails however this should not stop valid data being returned. In this situation
the error WFS_ERR_IDC_SECURITYFAIL will be returned if the form specifies only security
data to be read, in all other cases WFS_SUCCESS will be returned with the security field of the
output parameter set to WFS_IDC_SEC_HWERROR.

Input Param LPSTR lpstrFormName;

lpstrFormName
Points to the name of the form that defines the behaviour for the reading of tracks (see Section
6, Form Definition).

Output Param LPSTR lpstrTrackData;

lpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required.
WFS_ERR_IDC_INVALIDDATA The read operation specified by the forms definition

could not be completed successfully due to invalid
track data. This is returned if all tracks in an ‘or’ (|)
operation cannot be read or if any track in an ‘and’ (&)
operation cannot be read. lpstrTrackData points to data
from the successfully read tracks (if any). One execute
event (WFS_EXEE_IDC_INVALIDTRACKDATA) is
generated for each specified track which could not be
read successfully. See the form description for the rules
defining how tracks are specified.

WFS_ERR_IDC_NOMEDIA The card was removed before completion of the read
action (the event
WFS_EXEE_IDC_MEDIAINSERTED has been
generated). For motor driven devices, the read is
disabled; i.e another command has to be issued to
enable the reader for card entry.

WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted or pulled
through the wrong way.

WFS_ERR_IDC_FORMNOTFOUND The specified form can not be found.
WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g., syntax

error).
WFS_ERR_IDC_SECURITYFAIL The security module failed reading the cards security

sign.
WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When this error

occurs the card remains at the exit slot.

Page 17
CWA 14050-4:2000

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When this error
occurs the card remains at the exit slot.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this command
Value Meaning
WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

Comments The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is always
preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by 0x00. The
data of the different tracks is separated by an additional 0x00. The end of the buffer is marked by
another additional 0x00 (see example below). Data encoding is defined in Section 6, Form
Definition.

Example of lpstrTrackData:
TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0

5.2 WFS_CMD_IDC_WRITE_TRACK

Description For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the track as described in the form specified by the lpstrFormName parameter,
and the other parameters.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data defined by the form and the parameters to the respective track
(see Section 7, Form Definition, for a more detailed description of the forms mechanism).

This procedure is followed by data verification.

If power fails during a write the outcome of the operation will be vendor specific, there is no
guarantee that the write will have succeeded.

Input Param LPWFSIDCWRITETRACK lpWriteTrack;

struct _wfs_idc_write_track
{
LPSTR lpstrFormName;
LPSTR lpstrTrackData;
WORD fwWriteMethod;
} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

lpstrFormName
Points to the name of the form to be used.
lpstrTrackData
Points to the data to be used in the form.

Page 18
CWA 14050-4:2000

fwWriteMethod
Indicates whether a low coercivity or high coercivity magnetic stripe is being written.

Value Meaning
WFS_IDC_LOCO Low coercivity magnetic stripe is being written.
WFS_IDC_HICO High coercivity magnetic stripe is being written.
WFS_IDC_AUTO Service provider will determine whether low or high

coercivity stripe is to be written.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
WFS_ERR_IDC_NOMEDIA The card was removed before completion of the write

action (the event
WFS_EXEE_IDC_MEDIAINSERTED has been
generated). For motor driven devices, the write is
disabled; i.e. another command has to be issued to
enable the reader for card entry.

WFS_ERR_IDC_INVALIDDATA An error occurred while writing the track.
WFS_ERR_IDC_DATASYNTAX The syntax of the data pointed to by lpstrTrackData is

in error, or does not conform to the form definition.
WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted or pulled

through the wrong way.
WFS_ERR_IDC_FORMNOTFOUND The specified form can not be found.
WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g., syntax

error).
WFS_ERR_IDC_WRITE_METHOD The fwWriteMethod value is inconsistent with device

capabilities.
WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When this error

occurs the card remains at the exit slot.
WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When this error

occurs the card remains at the exit slot.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

Comments The field data is always preceded by the corresponding keyword, separated by an ‘=’. This
keyword could be one of the fields defined in the form or the predefined keyword ‘ALL’. Fields
are separated by 0x00. The end of the buffer is marked with an additional 0x00. (See the example
below and Section 6, Form Definition.). This specification means that only one track can be

Page 19
CWA 14050-4:2000

written in the same command. This is a fundamental capability of an ID card unit; thus if a write
request is received by a device with no write capability, the WFS_ERR_UNSUPP_COMMAND
error is returned.

Example of lpstrTrackData:
RETRYCOUNT=3\0DATE=3132\0\0

5.3 WFS_CMD_IDC_EJECT_CARD

Description The card is driven to the exit slot from where the user can remove it; applicable only to motor
driven card readers. After successful completion of this command, a service event message is
generated to inform the application when the card is taken. The card remains in position for
withdrawal until either it is taken or another command is issued that moves the card

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required.
WFS_ERR_IDC_NOMEDIA No card is present.
WFS_ERR_IDC_MEDIARETAINED The card has been retained during attempts to eject it.

The device is clear and can be used.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED The card has been taken by the user.

Comments This is a fundamental capability of an ID card unit; thus if an eject request is received by a device
with no eject capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

5.4 WFS_CMD_IDC_RETAIN_CARD

Description The card is removed from its present position (card inserted into device, card entering, unknown
position) and stored in the retain bin; applicable to motor-driven card readers only. The ID card
unit sends an event, if the storage capacity of the retain bin is reached. If the storage capacity has
already been reached, and the command cannot be executed, an error is returned and the card
remains in its present position.

Input Param None.

Output Param LPWFSIDCRETAINCARD lpRetainCard;

typedef struct _wfs_idc_retain_card
{
USHORT usCount;
WORD fwPosition;
} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

usCount
Total number of ID cards retained up to and including this operation, since the last
WFS_CMD_IDC_RESET_COUNT command was executed.

fwPosition
Position of card; only relevant if card could not be retained. Possible positions:

Value Meaning
WFS_IDC_MEDIAUNKNOWN The position of the card can not be determined with the

device in its current state.

Page 20
CWA 14050-4:2000

WFS_IDC_MEDIAPRESENT The card is present in the reader.
WFS_IDC_MEDIAENTERING The card is in the entering position (shutter).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_NOMEDIA No card has been inserted. The fwPosition parameter

has the value WFS_IDC_MEDIAUNKNOWN.
WFS_ERR_IDC_RETAINBINFULL The retain bin is full; no more cards can be retained.

The current card is still in the device.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin reached a threshold value.
WFS_SRVE_IDC_MEDIAREMOVED The card has been taken by the user.
WFS_EXEE_IDC_MEDIARETAINED The card has been retained.

Comments This is a fundamental capability of an ID card unit; thus if a retain request is received by a device
with no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

5.5 WFS_CMD_IDC_RESET_COUNT

Description This function resets the present value for number of cards retained to zero. The function is
possible for motor-driven card readers only.

The number of cards retained is controlled by the service and can be requested before resetting via
the WFS_INF_IDC_STATUS.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin was emptied.

Comments This is a fundamental capability of an ID card unit; thus if this request is received by a device with
no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

5.6 WFS_CMD_IDC_SETKEY

Description This command is used for setting the DES key that is necessary for operating a CIM86 module.
The command must be executed before the first read command is issued to the card reader.

Input Param LPWFSIDCSETKEY lpSetkey;

typedef struct _wfs_idc_setkey
{
USHORT usKeyLen;
LPBYTE lpbKeyValue;
} WFSIDCSETKEY, *LPWFSIDCSETKEY;

usKeyLen
Specifies the length of the following key value.

Page 21
CWA 14050-4:2000

lpbKeyValue
Pointer to a byte array containing the CIM86 DES key. This key is supplied by the vendor of the
CIM86 module.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_INVALIDKEY The key does not fit to the security module.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.7 WFS_CMD_IDC_READ_RAW_DATA

Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, all
specified tracks are read immediately. If reading the chip is requested, the chip will be contacted
and reset and the ATR (Answer To Reset) data will be read. When this command completes the
chip will be in contacted position. This command can also be used for an explicit cold reset of a
previously contacted chip.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. The next step is trying to read all tracks specified.

Magnetic stripe track data is converted from its 5 or 7 bit character form to 8 bit ASCII form. The
parity bit from each 5 or 7 bit magnetic stripe character is discarded. Start and end sentinel
characters are not returned to the application. Field separator characters are returned to the
application, and are also converted to 8 bit ASCII form.

In addition to that, a security check via a security module (i.e., MM, CIM86) can be requested. If
the security check fails however this should not stop valid data being returned. In this situation the
error WFS_ERR_IDC_SECURITYFAIL will be returned if the command specifies only security
data to be read, in all other cases WFS_SUCCESS will be returned with the lpbData field of the
output parameter set to WFS_IDC_SEC_HWERROR.

Input Param LPWORD lpwReadData;

lpwReadData
Specifies the data that should be read as a combination of the following flags:
Value Meaning
WFS_IDC_TRACK1 Track 1 of the magnetic stripe will be read.
WFS_IDC_TRACK2 Track 2 of the magnetic stripe will be read.
WFS_IDC_TRACK3 Track 3 of the magnetic stripe will be read.
WFS_IDC_CHIP The chip will be read.
WFS_IDC_SECURITY A security check will be performed.
WFS_IDC_FLUXINACTIVE If the IDC Flux Sensor is programmable it will be

disabled in order to allow chip data to be read on cards
which have no magnetic stripes.

WFS_IDC_TRACK_WM The Swedish Watermark track will be read.

Output Param LPWFSIDCCARDDATA *lppCardData;

lppCardData
Pointer to a null-terminated array of pointers to card data structures:

struct _wfs_idc_card_data
{
WORD wDataSource;
WORD wStatus;
ULONG ulDataLength;
LPBYTE lpbData;

Page 22
CWA 14050-4:2000

WORD fwWriteMethod;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

wDataSource
Specifies the source of the card data as one of the following flags:
Value Meaning
WFS_IDC_TRACK1 lpbData contains data read from track 1.
WFS_IDC_TRACK2 lpbData contains data read from track 2.
WFS_IDC_TRACK3 lpbData contains data read from track 3.
WFS_IDC_CHIP lpbData contains ATR data read from the chip.
WFS_IDC_SECURITY lpbData contains the value returned by the security module.
WFS_IDC_TRACK_WM lpbData contains data read from the Swedish Watermark

track.

wStatus
Status of reading the card data. Possible values are:
Value Meaning
WFS_IDC_DATAOK The data is ok.
WFS_IDC_DATAMISSING The track/chip is blank.
WFS_IDC_DATAINVALID The data contained on the track/chip is invalid.
WFS_IDC_DATATOOLONG The data contained on the track/chip is too long.
WFS_IDC_DATATOOSHORT The data contained on the track/chip is too short.
WFS_IDC_DATASRCNOTSUPP The data source to read from is not supported by the service

provider.
WFS_IDC_DATASRCMISSING The data source to read from is missing on the card.

ulDataLength
Specifies the length of the following field lpbData.

lpbData
Points to the data read from the track/chip or the value returned by the security module. The
security module can return one of the following values:
Value Meaning
WFS_IDC_SEC_READLEVEL1 The security data readability level is 1.
WFS_IDC_SEC_READLEVEL2 The security data readability level is 2.
WFS_IDC_SEC_READLEVEL3 The security data readability level is 3.
WFS_IDC_SEC_READLEVEL4 The security data readability level is 4.
WFS_IDC_SEC_READLEVEL5 The security data readability level is 5.
WFS_IDC_SEC_BADREADLEVEL The security data reading quality is not acceptable.
WFS_IDC_SEC_NODATA There are no security data on the card.
WFS_IDC_SEC_DATAINVAL The validation of the security data with the specific data on

the magnetic stripe was not successful.
WFS_IDC_SEC_HWERROR The security module could not be used, because of a

hardware error.
WFS_IDC_SEC_NOINIT The security module could not be used, because it was not

initialized (e.g. CIM key is not loaded).

fwWriteMethod
Ignored for this command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required.
WFS_ERR_IDC_NOMEDIA The card was removed before completion of the read

action (the event
WFS_EXEE_IDC_MEDIAINSERTED has been
generated). For motor driven devices, the read is
disabled; i.e. another command has to be issued to
enable the reader for card entry.

Page 23
CWA 14050-4:2000

WFS_ERR_IDC_INVALIDMEDIA No track or chip found; card may have been inserted or
pulled through the wrong way.

WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When this error
occurs the card remains at the exit slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When this error
occurs the card remains at the exit slot.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

Comments None.

5.8 WFS_CMD_IDC_WRITE_RAW_DATA

Description For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the tracks.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data to the respective tracks.

The application must pass the magnetic stripe data in ASCII without any sentinels. The data will
be converted by the service provider (ref WFS_CMD_IDC_READ_RAW_DATA). If the data
passed in is too long the WFS_ERR_INVALID_DATA error code will be returned.

This procedure is followed by data verification.

If power fails during a write the outcome of the operation will be vendor specific, there is no
guarantee that the write will have succeeded.

Input Param LPWFSIDCCARDDATA *lppCardData;

Pointer to a null-terminated array of pointers to card data structures:

struct _wfs_idc_card_data
{
WORD wDataSource;
WORD wStatus;
ULONG ulDataLength;
LPBYTE lpbData;
WORD fwWriteMethod;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

wDataSource
Specifies the source of the card data as one of the following flags:
Value Meaning
WFS_IDC_TRACK1 lpbData contains data to be written to track 1.
WFS_IDC_TRACK2 lpbData contains data to be written to track 2.
WFS_IDC_TRACK3 lpbData contains data to be written to track 3.

Page 24
CWA 14050-4:2000

wStatus
This parameter is ignored by this command.

ulDataLength
Specifies the length of the following field lpbData.

lpbData
Points to the data to be written to the track.

fwWriteMethod
Indicates whether a loco or hico magnetic stripe is being written.
Value Meaning
WFS_IDC_LOCO Low coercivity magnetic stripe is being written.
WFS_IDC_HICO High coercivity magnetic stripe is being written.
WFS_IDC_AUTO Service provider will determine whether low or high

coercivity stripe is to be written.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
WFS_ERR_IDC_NOMEDIA The card was removed before completion of the write

action (the event
WFS_EXEE_IDC_MEDIAINSERTED has been
generated). For motor driven devices, the write is
disabled; i.e. another command has to be issued to
enable the reader for card entry.

WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted or pulled
through the wrong way.

WFS_ERR_IDC_WRITE_METHOD The fwWriteMethod value is inconsistent with device
capabilities.

WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When this error
occurs the card remains at the exit slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When this error
occurs the card remains at the exit slot.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

Comments This is a fundamental capability of an ID card unit; thus if a write request is received by a device
with no write capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

Page 25
CWA 14050-4:2000

5.9 WFS_CMD_IDC_CHIP_IO

Description This command is used to communicate with the chip. Transparent data is sent from the application
to the chip and the response of the chip is returned transparently to the application.

The ATR of the chip must be obtained before issuing this command by issuing a Read Command.

Input Param LPWFSIDCCHIPIO lpChipIoIn;

struct _wfs_idc_chip_io
{
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are those
described in WFS_INF_IDC_CAPABILITIES.

ulChipDataLength
Specifies the length of the following field lpbChipData.

lpbChipData
Points to the data sent to the chip.

Output Param LPWFSIDCCHIPIO lpChipIoOut;

struct _wfs_idc_chip_io
{
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

wChipProtocol
Identifies the protocol that is used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

ulChipDataLength
Specifies the length of the following field lpbChipData.

lpbChipData
Points to the data responded from the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_NOMEDIA There is no card inside the device.
WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted the

wrong way.
WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with the

chip.
WFS_ERR_IDC_PROTOCOLNOTSUPP The protocol used was not supported by the

service provider.
WFS_ERR_IDC_ATRNOTOBTAINED The ATR was not obtained before by issuing a

Read Command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of an operation.

Comments None.

Page 26
CWA 14050-4:2000

5.10 WFS_CMD_IDC_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the IDC device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

The device will attempt to either retain, eject or will perform no action on any cards found in the
IDC as specified in the lpwResetIn parameter. It may not always be possible to retain or eject the
items as specified because of hardware problems. If a card is found inside the device the
WFS_SRVE_IDC_MEDIADETECTED event will inform the application where card was actually
moved to. If no action is specified the card will not be moved even if this means that the IDC
cannot be recovered.

Input Param LPWORD lpwResetIn;

Specifies the action to be performed on any card found within the ID card unit as one of the
following values:

Value Meaning
WFS_IDC_EJECT Eject any card found.
WFS_IDC_RETAIN Retain any card found.
WFS_IDC_NOACTION No action should be performed on any card found.

If this value is NULL. The service provider will determine where to move any card found.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The device is unable to open and close it’s shutter

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIADETECTED This event is generated when a media is detected

during a reset.

Comments None

5.11 WFS_CMD_IDC_CHIP_POWER

Description This command handles the power actions that can be done on the chip. This command is only used
after the chip has been contacted for the first time using the
WFS_CMD_IDC_READ_RAW_DATA command.

Input Param LPWORD lpwChipPower;

lpwChipPower
Specifies the action to perform as one of the following flags:
Value Meaning
WFS_IDC_CHIPPOWERCOLD The chip is powered on and reset (Cold Reset).
WFS_IDC_CHIPPOWERWARM The chip is reset (Warm Reset).
WFS_IDC_CHIPPOWEROFF The chip is powered off.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_CHIPPOWERNOTSUPP The specified action is not supported by the

hardware device.

Page 27
CWA 14050-4:2000

WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is
required.

WFS_ERR_IDC_NOMEDIA There is no card inside the device.
WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted or

pulled through the wrong way.
WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with the

chip.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of the operation.

Comments None.

5.12 WFS_CMD_IDC_PARSE_DATA

Description This command takes form name and the output of a successful
WFS_CMD_IDC_READ_RAW_DATA command and returns the parsed string.

Input Param LPWFSIDCPARSEDATA lpParseData;

typedef struct _wfs_idc_parse_data
{
LPSTR lpstrFormName;
LPWFSIDCCARDDATA *lppCardData;
} WFSIDCPARSEDATA, * LPWFSIDCPARSEDATA;

lpstrFormName
Points to the name of the form that defines the behaviour for the reading of tracks (see Section
6, Form Description).

lppCardData
Points to a null-terminated array of pointers to card data structures, as returned from the
WFS_CMD_IDC_READ_RAW_DATA command.

Output Param LPSTR lpstrTrackData;

lpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_INVALIDDATA The read operation specified by the forms definition

could not be completed successfully due to invalid or
incomplete track data being passed in. This is returned
if none of the tracks in an ‘or’ (|) operation is contained
in the lppCardData array or if any track in an ‘and’ (&)
operation is not found in the input. One execute event
(WFS_EXEE_IDC_INVALIDTRACKDATA) is
generated for each specified track which could not be
parsed successfully. See the form description for the
rules defining how tracks are specified.

WFS_ERR_IDC_FORMNOTFOUND The specified form can not be found.
WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g., syntax

error).

Page 28
CWA 14050-4:2000

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error
reading the track or the data does not
conform to the specified form definition).

Comments The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is always
preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by 0x00. The
data of the different tracks is separated by an additional 0x00. The end of the buffer is marked by
another additional 0x00 (see example below). Data encoding is defined in Section 6, Form
Definition.

Example of lpstrTrackData:
TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0

Page 29
CWA 14050-4:2000

6. Events

6.1 WFS_EXEE_IDC_INVALIDTRACKDATA

Description This execute event specifies that a track contained invalid or no data.

Event Param LPWFSIDCTRACKEVENT lpTrackEvent;

struct _wfs_idc_track_event
{
WORD fwStatus;
LPSTR lpstrTrack;
LPSTR lpstrData;
} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT;

fwStatus
Status of reading the track. Possible values are:

Value Meaning
WFS_IDC_DATAMISSING The track is blank.
WFS_IDC_DATAINVALID The data contained on the track is invalid.
WFS_IDC_DATATOOLONG The data contained on the track is too long.
WFS_IDC_DATATOOSHORT The data contained on the track is too short.

lpstrTrack
Points to the keyword of the track on which the error occurred.

lpstrData
Points to the data that could be read (that may be only a fragment of the track), terminated by a
null character. This data is simply a stream of characters; it does not contain keywords.

6.2 WFS_EXEE_IDC_MEDIAINSERTED

Description This execute event specifies that a card was inserted into the device.

Event Param None.

6.3 WFS_SRVE_IDC_MEDIAREMOVED

Description This service event specifies that the inserted card was manually removed by the user during the
processing of a read/write command or after an eject operation.

Event Param None.

6.4 WFS_EXEE_IDC_MEDIARETAINED

Description This service event specifies that the card was retained.

Event Param None.

Page 30
CWA 14050-4:2000

6.5 WFS_EXEE_IDC_INVALIDMEDIA

Description This execute event specifies that the media the user is attempting to insert is not a valid card or it
is a card but it is in the wrong orientation.

Event Param None.

6.6 WFS_SRVE_IDC_CARDACTION

Description This service event specifies that a card has been retained or ejected by either the automatic power
on or power off action of the device.

Event Param LPWFSIDCCARDACT lpCardAct;

typedef struct _wfs_idc_card_act
{
WORD wAction;
WORD wPosition;
} WFSIDCCARDACT, * LPWFSIDCCARDACT;

wAction
Specifies which action has been performed with the card. Possible values are:

Value Meaning
WFS_IDC_CARDRETAINED The card has been retained.
WFS_IDC_CARDEJECTED The card has been ejected.
WFS_IDC_CARDREADPOSITION The card has been moved to the read position

wPosition
Position of card before being retained or ejected. Possible values are:

Value Meaning
WFS_IDC_MEDIAUNKNOWN The position of the card can not be determined.
WFS_IDC_MEDIAPRESENT The card was present in the reader.
WFS_IDC_MEDIAENTERING The card was entering the reader.

6.7 WFS_USRE_IDC_RETAINBINTHRESHOLD

Description This user event specifies that the retain bin holding the retained cards has reached a threshold
condition or the threshold condition is removed.

Event Param LPWORD lpfwRetainBin;

lpfwRetainBin
Specifies the state of the ID card unit retain bin as one of the following values:

Value Meaning
WFS_IDC_RETAINBINOK The retain bin of the ID card unit was emptied.
WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly full.

6.8 WFS_SRVE_IDC_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_IDC_RESET).
The parameter on the event informs the application of the position of the card on the completion
of the reset.

Event Param LPWORD * lpwResetOut;
Specifies the action that was performed on any card found within the IDC as one of the following
values:
Value Meaning
WFS_IDC_CARDEJECTED The card was ejected.
WFS_IDC_CARDRETAINED The card was retained.
WFS_IDC_CARDREADPOSITION The card is in read position.
WFS_IDC_CARDJAMMED The card is jammed in the device.

Page 31
CWA 14050-4:2000

7. Form Description

This section describes the forms mechanism used to define the tracks to be read or written. Forms are contained in a
single file, with one section for each defined form. The name of each section is the form name parameter in the
WFS_CMD_IDC_READ_TRACK and WFS_CMD_IDC_WRITE_TRACK commands.

The way to specify the location of a form file is vendor dependent.

As an example the following registry information can be used:

WOSA/XFS_ROOT
FORMS

IDCU
formfile=<path><filename>

The read form defines which tracks should be read in the WFS_CMD_IDC_READ_TRACK command and what the
response should be to a read failure. The read form can also be used to define logical track data, i.e. fields like
“account number,” “issuer identifier,” and their position within the physical track data. For example, the output
parameter of the WFS_CMD_IDC_READ_TRACK command with input parameter lpstrFormName =
READTRACK3GERMAN could look like (see example 1 below):

"TRACK3:MII=59\0COUNTRY=280\0ISSUERID=50050500\0ACCOUNT=1234567890\0LUHNT3=1\0
EXPIRATION=9912\0SECURE=1\0\0\0"

The write form defines which track is to be written, the logical track data that is handed over in the
WFS_CMD_IDC_WRITE_TRACK command, and how the write data is to be converted to the physical data to be
written.

Reserved Keywords/Operands 1 Meaning

[] form name delimiters

TRACK1 keyword to identify track 1

TRACK2 keyword to identify track 2

TRACK3 keyword to identify track 3

FIELDSEPT1 value of field separator of track 1

FIELDSEPT2 value of field separator of track 2

FIELDSEPT3 value of field separator of track 3

READ description of read action; the TRACKn keywords are processed left to
right

WRITE description of write action

ALL read or write the complete track

SECURE do the security check via the security module (CIM86 or MM)

& read/write all tracks specified, abort reading on read failure

| read/write at least one of the tracks specified, continue reading on read
failure

FIELDSEPPOSn position of the nth occurrence of field separator on track.
FIELDSEPPOS0 specifies the beginning of the data.

, separator in a list of logical fields

DEFAULT string for default substitution of track data to be written, that is not
defined explicitly by the form fields. DEFAULT also allows an
application to input fewer fields than those defined by the form.

? Reserved value for DEFAULT keyword: substitute track data to write
with its value read before.

1 Attributes are not required in any mandatory order.

Page 32
CWA 14050-4:2000

ENDTRACK represents the end of the data. It is used to identify fields positioned after
the last field separator

Notes
The & and | operands may be combined in a single READ statement; for example:

� read track3 or track2, trying track3 first:
READ= TRACK3 | TRACK2

� read track 3 and at least one of track2 or track1:
READ= TRACK3 & (TRACK2 | TRACK1)

or:
READ= TRACK2 | TRACK1 & TRACK3

The keywords FIELDSEPPOS0 and ENDTRACK are used as follows:

� read the first 2 bytes of a track:
FIRST= FIELDSEPPOS0 + 1, FIELDSEPPOS0 + 2

� read the last 2 bytes of a track:
LAST= ENDTRACK – 2, ENDTRACK – 1

Use of field separators in track layouts is to replace optional fields and terminate variable length fields.

Write forms are designed for updating specific fields without altering the position of the field separators.

The application may alter the position of the field separators by rewriting the card tracks (ALL option or
DEFAULT option with default track data).

Example 1 Reading tracks:

[READTRACK3GERMAN]
FIELDSEPT3= = /* field separator of track 3 */
READ= TRACK3 /* only track 3 must be read */
TRACK3= MII, COUNTRY, ISSUERID, ACCOUNT, LUHNT3, EXPIRATION, SECURE

/* read logical
fields as defined
below; also check the
security */

MII= FIELDSEPPOS0 + 3, FIELDSEPPOS0 + 4
ISSUERID= FIELDSEPPOS0 + 5, FIELDSEPPOS1 - 1
ACCOUNT= FIELDSEPPOS1 + 1, FIELDSEPPOS2 - 2
LUHNT3= FIELDSEPPOS2 - 1, FIELDSEPPOS2 – 1
COUNTRY= FIELDSEPPOS2 + 1, FIELDSEPPOS2 + 3
EXPIRATION= FIELDSEPPOS2 + 36, FIELDSEPPOS2 + 39

All tracks must be read (‘READ’), that is, the read fails if an error occurs on reading any one of
the tracks (the ‘&’ operand). The field “major industry identifier” (‘MII’) is located after the first
field separator (‘FIELDSEPPOS1’) and its length is two bytes. The “issuer identifier” field
(‘ISSUERID’) is located after the MII field, with a length of eight bytes. The next field, “account
number” (‘ACCOUNT’) is variable length; it ends before the luhn digit field (‘LUHNT3’) that is
the last digit in front of the second field separator (‘FIELDSEPPOS2’).

Example 2 Write a track:

[WRITETRACK3]
FIELDSEPT3= =
DEFAULT= ? /* fields not specified in the write form are to be left

unchanged, i.e., read and the same data written back to
them */

WRITE= TRACK3
TRACK3= RETRYCOUNT, DATE
RETRYCOUNT= FIELDSEPPOS2 + 22, FIELDSEPPOS2 + 22
DATE= FIELDSEPPOS5 + 1, FIELDSEPPOS5 + 4

Page 33
CWA 14050-4:2000

Track 3 is to be written. In the example only the retry counter and the date of the last transaction
are updated, the other fields are unchanged.

A sample of input data to be used with this form is as follows:

RETRYCOUNT=3\0DATE=3132\00

Example 3 Write a track:

[WRITETRACK3ALL]
WRITE= TRACK3
TRACK3= ALL

Track 3 is to be written. By specifying ALL, the data passed in the
WFS_CMD_IDC_WRITE_TRACK command is written to the physical track without formatting.

A sample of input data to be used with this form is as follows:

ALL=123456789123\0\0

Page 34
CWA 14050-4:2000

8. Relation with PC/SC

The PC/SC (Personal Computer / Smart Card) Workgroup was formed in May 1996 in partnership with major PC
and smart card companies. The main focus of the workgroup has been to develop specifications that ensure
interoperability among smart cards, smart card readers, and computers made by different manufacturers:

Interoperability Specification for Integrated Circuit Cards (ICC) and Personal Computer Systems

Version 1.0 of these specifications were released in December 1997. There are available on the Web at:
http://www.pcscworkgroup.com

The related document PC/SC Integration Guidelines describes the relation between XFS and PC/SC and provides
guidelines to manage PC/SC compliant readers from the XFS subsystem.

In order to make integration of PC/SC compliant smart cards easier, the following principles have been defined to
add new chip capabilities to the IDC Device Class Interface:

� A new set of chip capabilities is made of new queries and commands which should be consistent.
� An associated COM-based interface definition reflects these new queries and commands.
� This COM-based interface definition and its associated GUID are published part of this specification, to allow

its implementation in PC/SC ICC service providers.

These principles allow the IDC service provider for a PC/SC compliant reader to be a wrapper for ICC commands,
which are handled in the PC/SC subsystem by the corresponding PC/SC ICC service provider.

Page 35
CWA 14050-4:2000

9. C-Header file

/**
* *
* xfsidc.h XFS - Identification card unit (IDC) definitions *
* *
* Version 3.00 (10/18/00) *
* *
**/

#ifndef __INC_XFSIDC__H
#define __INC_XFSIDC__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSIDCCAPS.wClass */

#define WFS_SERVICE_CLASS_IDC (2)
#define WFS_SERVICE_CLASS_NAME_IDC "IDC"
#define WFS_SERVICE_CLASS_VERSION_IDC 0x0003

#define IDC_SERVICE_OFFSET (WFS_SERVICE_CLASS_IDC * 100)

/* IDC Info Commands */

#define WFS_INF_IDC_STATUS (IDC_SERVICE_OFFSET + 1)
#define WFS_INF_IDC_CAPABILITIES (IDC_SERVICE_OFFSET + 2)
#define WFS_INF_IDC_FORM_LIST (IDC_SERVICE_OFFSET + 3)
#define WFS_INF_IDC_QUERY_FORM (IDC_SERVICE_OFFSET + 4)

/* IDC Execute Commands */

#define WFS_CMD_IDC_READ_TRACK (IDC_SERVICE_OFFSET + 1)
#define WFS_CMD_IDC_WRITE_TRACK (IDC_SERVICE_OFFSET + 2)
#define WFS_CMD_IDC_EJECT_CARD (IDC_SERVICE_OFFSET + 3)
#define WFS_CMD_IDC_RETAIN_CARD (IDC_SERVICE_OFFSET + 4)
#define WFS_CMD_IDC_RESET_COUNT (IDC_SERVICE_OFFSET + 5)
#define WFS_CMD_IDC_SETKEY (IDC_SERVICE_OFFSET + 6)
#define WFS_CMD_IDC_READ_RAW_DATA (IDC_SERVICE_OFFSET + 7)
#define WFS_CMD_IDC_WRITE_RAW_DATA (IDC_SERVICE_OFFSET + 8)
#define WFS_CMD_IDC_CHIP_IO (IDC_SERVICE_OFFSET + 9)
#define WFS_CMD_IDC_RESET (IDC_SERVICE_OFFSET + 10)
#define WFS_CMD_IDC_CHIP_POWER (IDC_SERVICE_OFFSET + 11)
#define WFS_CMD_IDC_PARSE_DATA (IDC_SERVICE_OFFSET + 12)

/* IDC Messages */

#define WFS_EXEE_IDC_INVALIDTRACKDATA (IDC_SERVICE_OFFSET + 1)
#define WFS_EXEE_IDC_MEDIAINSERTED (IDC_SERVICE_OFFSET + 3)
#define WFS_SRVE_IDC_MEDIAREMOVED (IDC_SERVICE_OFFSET + 4)
#define WFS_SRVE_IDC_CARDACTION (IDC_SERVICE_OFFSET + 5)
#define WFS_USRE_IDC_RETAINBINTHRESHOLD (IDC_SERVICE_OFFSET + 6)
#define WFS_EXEE_IDC_INVALIDMEDIA (IDC_SERVICE_OFFSET + 7)
#define WFS_EXEE_IDC_MEDIARETAINED (IDC_SERVICE_OFFSET + 8)
#define WFS_SRVE_IDC_MEDIADETECTED (IDC_SERVICE_OFFSET + 9)

/* values of WFSIDCSTATUS.fwDevice */
#define WFS_IDC_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_IDC_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_IDC_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_IDC_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_IDC_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_IDC_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_IDC_DEVBUSY WFS_STAT_DEVBUSY

Page 36
CWA 14050-4:2000

/* values of WFSIDCSTATUS.fwMedia, WFSIDCRETAINCARD.fwPosition, */
/* WFSIDCCARDACT.fwPosition */

#define WFS_IDC_MEDIAPRESENT (1)
#define WFS_IDC_MEDIANOTPRESENT (2)
#define WFS_IDC_MEDIAJAMMED (3)
#define WFS_IDC_MEDIANOTSUPP (4)
#define WFS_IDC_MEDIAUNKNOWN (5)
#define WFS_IDC_MEDIAENTERING (6)

/* values of WFSIDCSTATUS.fwRetainBin */

#define WFS_IDC_RETAINBINOK (1)
#define WFS_IDC_RETAINNOTSUPP (2)
#define WFS_IDC_RETAINBINFULL (3)
#define WFS_IDC_RETAINBINHIGH (4)

/* values of WFSIDCSTATUS.fwSecurity */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECNOTREADY (2)
#define WFS_IDC_SECOPEN (3)

/* values of WFSIDCSTATUS.fwChipPower */

#define WFS_IDC_CHIPONLINE (0)
#define WFS_IDC_CHIPPOWEREDOFF (1)
#define WFS_IDC_CHIPBUSY (2)
#define WFS_IDC_CHIPNODEVICE (3)
#define WFS_IDC_CHIPHWERROR (4)
#define WFS_IDC_CHIPNOCARD (5)
#define WFS_IDC_CHIPNOTSUPP (6)
#define WFS_IDC_CHIPUNKNOWN (7)

/* values of WFSIDCCAPS.fwType */

#define WFS_IDC_TYPEMOTOR (1)
#define WFS_IDC_TYPESWIPE (2)
#define WFS_IDC_TYPEDIP (3)
#define WFS_IDC_TYPECONTACTLESS (4)

/* values of WFSIDCCAPS.fwReadTracks, WFSIDCCAPS.fwWriteTracks,
 WFSIDCCARDDATA.wDataSource */

#define WFS_IDC_NOTSUPP 0x0000
#define WFS_IDC_TRACK1 0x0001
#define WFS_IDC_TRACK2 0x0002
#define WFS_IDC_TRACK3 0x0004

/* further values of WFSIDCCARDDATA.wDataSource */

#define WFS_IDC_CHIP 0x0008
#define WFS_IDC_SECURITY 0x0010
#define WFS_IDC_FLUXINACTIVE 0x0020
#define WFS_IDC_TRACK_WM 0x8000

/* values of WFSIDCCAPS.fwChipProtocols */

#define WFS_IDC_CHIPT0 0x0001
#define WFS_IDC_CHIPT1 0x0002
#define WFS_IDC_CHIPT2 0x0004
#define WFS_IDC_CHIPT3 0x0008
#define WFS_IDC_CHIPT4 0x0010
#define WFS_IDC_CHIPT5 0x0020
#define WFS_IDC_CHIPT6 0x0040
#define WFS_IDC_CHIPT7 0x0080
#define WFS_IDC_CHIPT8 0x0100
#define WFS_IDC_CHIPT9 0x0200
#define WFS_IDC_CHIPT10 0x0400
#define WFS_IDC_CHIPT11 0x0800
#define WFS_IDC_CHIPT12 0x1000
#define WFS_IDC_CHIPT13 0x2000

Page 37
CWA 14050-4:2000

#define WFS_IDC_CHIPT14 0x4000
#define WFS_IDC_CHIPT15 0x8000

/* values of WFSIDCCAPS.fwSecType */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECMMBOX (2)
#define WFS_IDC_SECCIM86 (3)

/* values of WFSIDCCAPS.fwPowerOnOption, WFSIDCCAPS.fwPowerOffOption, */

#define WFS_IDC_NOACTION (1)
#define WFS_IDC_EJECT (2)
#define WFS_IDC_RETAIN (3)
#define WFS_IDC_EJECTTHENRETAIN (4)
#define WFS_IDC_READPOSITION (5)

/* values of WFSIDCCAPS.fwWriteMode; WFSIDCWRITETRACK.fwWriteMethod,
WFSIDCCARDDATA.fwWriteMethod */

#define WFS_IDC_UNKNOWN 0x0001
#define WFS_IDC_LOCO 0x0002
#define WFS_IDC_HICO 0x0004
#define WFS_IDC_AUTO 0x0008

/* values of WFSIDCCAPS.fwChipPower */

#define WFS_IDC_CHIPPOWERCOLD 0x0002
#define WFS_IDC_CHIPPOWERWARM 0x0004
#define WFS_IDC_CHIPPOWEROFF 0x0008

/* values of WFSIDCFORM.fwAction */

#define WFS_IDC_ACTIONREAD 0x0001
#define WFS_IDC_ACTIONWRITE 0x0002

/* values of WFSIDCTRACKEVENT.fwStatus, WFSIDCCARDDATA.wStatus */

#define WFS_IDC_DATAOK (0)
#define WFS_IDC_DATAMISSING (1)
#define WFS_IDC_DATAINVALID (2)
#define WFS_IDC_DATATOOLONG (3)
#define WFS_IDC_DATATOOSHORT (4)
#define WFS_IDC_DATASRCNOTSUPP (5)
#define WFS_IDC_DATASRCMISSING (6)

/* values WFSIDCCARDACT.wAction */

#define WFS_IDC_CARDRETAINED (1)
#define WFS_IDC_CARDEJECTED (2)
#define WFS_IDC_CARDREADPOSITION (3)
#define WFS_IDC_CARDJAMMED (4)

/* values of WFSIDCCARDDATA.lpbData if security is read */

#define WFS_IDC_SEC_READLEVEL1 '1'
#define WFS_IDC_SEC_READLEVEL2 '2'
#define WFS_IDC_SEC_READLEVEL3 '3'
#define WFS_IDC_SEC_READLEVEL4 '4'
#define WFS_IDC_SEC_READLEVEL5 '5'
#define WFS_IDC_SEC_BADREADLEVEL '6'
#define WFS_IDC_SEC_NODATA '7'
#define WFS_IDC_SEC_DATAINVAL '8'
#define WFS_IDC_SEC_HWERROR '9'
#define WFS_IDC_SEC_NOINIT 'A'

/* WOSA/XFS IDC Errors */

#define WFS_ERR_IDC_MEDIAJAM (-(IDC_SERVICE_OFFSET + 0))
#define WFS_ERR_IDC_NOMEDIA (-(IDC_SERVICE_OFFSET + 1))
#define WFS_ERR_IDC_MEDIARETAINED (-(IDC_SERVICE_OFFSET + 2))
#define WFS_ERR_IDC_RETAINBINFULL (-(IDC_SERVICE_OFFSET + 3))
#define WFS_ERR_IDC_INVALIDDATA (-(IDC_SERVICE_OFFSET + 4))
#define WFS_ERR_IDC_INVALIDMEDIA (-(IDC_SERVICE_OFFSET + 5))

Page 38
CWA 14050-4:2000

#define WFS_ERR_IDC_FORMNOTFOUND (-(IDC_SERVICE_OFFSET + 6))
#define WFS_ERR_IDC_FORMINVALID (-(IDC_SERVICE_OFFSET + 7))
#define WFS_ERR_IDC_DATASYNTAX (-(IDC_SERVICE_OFFSET + 8))
#define WFS_ERR_IDC_SHUTTERFAIL (-(IDC_SERVICE_OFFSET + 9))
#define WFS_ERR_IDC_SECURITYFAIL (-(IDC_SERVICE_OFFSET + 10))
#define WFS_ERR_IDC_PROTOCOLNOTSUPP (-(IDC_SERVICE_OFFSET + 11))
#define WFS_ERR_IDC_ATRNOTOBTAINED (-(IDC_SERVICE_OFFSET + 12))
#define WFS_ERR_IDC_INVALIDKEY (-(IDC_SERVICE_OFFSET + 13))
#define WFS_ERR_IDC_WRITE_METHOD (-(IDC_SERVICE_OFFSET + 14))
#define WFS_ERR_IDC_CHIPPOWERNOTSUPP (-(IDC_SERVICE_OFFSET + 15))
#define WFS_ERR_IDC_CARDTOOSHORT (-(IDC_SERVICE_OFFSET + 16))
#define WFS_ERR_IDC_CARDTOOLONG (-(IDC_SERVICE_OFFSET + 17))

/*===*/
/* IDC Info Command Structures and variables */
/*===*/

typedef struct _wfs_idc_status
{
 WORD fwDevice;
 WORD fwMedia;
 WORD fwRetainBin;
 WORD fwSecurity;
 USHORT usCards;
 WORD fwChipPower;
 LPSTR lpszExtra;
} WFSIDCSTATUS, * LPWFSIDCSTATUS;

typedef struct _wfs_idc_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 WORD fwReadTracks;
 WORD fwWriteTracks;
 WORD fwChipProtocols;
 USHORT usCards;
 WORD fwSecType;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 BOOL bFluxSensorProgrammable;
 BOOL bReadWriteAccessFollowingEject;
 WORD fwWriteMode;
 WORD fwChipPower;
 LPSTR lpszExtra;
} WFSIDCCAPS, * LPWFSIDCCAPS;

typedef struct _wfs_idc_form
{
 LPSTR lpszFormName;
 CHAR cFieldSeparatorTrack1;
 CHAR cFieldSeparatorTrack2;
 CHAR cFieldSeparatorTrack3;
 WORD fwAction;
 LPSTR lpszTracks;
 BOOL bSecure;
 LPSTR lpszTrack1Fields;
 LPSTR lpszTrack2Fields;
 LPSTR lpszTrack3Fields;
} WFSIDCFORM, * LPWFSIDCFORM;

/*===*/
/* IDC Execute Command Structures */
/*===*/

typedef struct _wfs_idc_write_track
{
 LPSTR lpstrFormName;
 LPSTR lpstrTrackData;
 WORD fwWriteMethod;
} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

Page 39
CWA 14050-4:2000

typedef struct _wfs_idc_retain_card
{
 USHORT usCount;
 WORD fwPosition;
} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

typedef struct _wfs_idc_setkey
{
 USHORT usKeyLen;
 LPBYTE lpbKeyValue;
} WFSIDCSETKEY, * LPWFSIDCSETKEY;

typedef struct _wfs_idc_card_data
{
 WORD wDataSource;
 WORD wStatus;
 ULONG ulDataLength;
 LPBYTE lpbData;
 WORD fwWriteMethod;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

typedef struct _wfs_idc_chip_io
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

typedef struct _wfs_idc_parse_data
{
 LPSTR lpstrFormName;
 LPWFSIDCCARDDATA *lppCardData;
} WFSIDCPARSEDATA, * LPWFSIDCPARSEDATA;

/*===*/
/* IDC Message Structures */
/*===*/

typedef struct _wfs_idc_track_event
{
 WORD fwStatus;
 LPSTR lpstrTrack;
 LPSTR lpstrData;
} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT;

typedef struct _wfs_idc_card_act
{
 WORD wAction;
 WORD wPosition;
} WFSIDCCARDACT, * LPWFSIDCCARDACT;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSIDC__H */

